Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more

Recommended product

Popular links

Popular links

Sustainable Engineering

Sustainable Engineering

Principles and Practice
Bhavik R. Bakshi , Ohio State University
June 2019
This ISBN is for an eBook version which is distributed on our behalf by a third party.
Adobe eBook Reader
9781108359429
$99.99
USD
Adobe eBook Reader
USD
Hardback

Drawing on multidisciplinary perspectives from engineering, economics, business, science, and human behavior, this text presents an unrivalled introduction to how engineering practice can contribute to sustainable development. Varied approaches for assessing the sustainability of engineering and other human activities are presented in detail, and potential solutions to meet key challenges are proposed, with an emphasis on those that require engineering skills. Each concept and approach is supported by mathematical representation, solved problems, real-world examples, and self-study exercises. Topics covered range from introductory material on the nature of sustainability, to more advanced approaches for assessment and design. Prerequisites for each chapter are clearly explained so the text can be adapted to meet the needs of students from a range of backgrounds. Software tutorials, project statements and solutions, lecture slides, and a solutions manual accompany the book online, making this an invaluable resource for courses in sustainable engineering, as well as a useful reference for industry practitioners.

  • Has multidisciplinary appeal, with perspectives from engineering, economics and the social sciences
  • Adaptable to students from a range of backgrounds, covering both introductory as well as mathematically rigorous advanced topics
  • Benefits from nearly 100 worked examples and over 200 end-of-chapter exercises

Reviews & endorsements

'This book addresses such critical topics as life-cycle assessment, energy and material flows, exergy, sustainability assessment, engineering design, industrial symbiosis, and circular economy. The author utilizes various case studies/examples, such as the case of genetically modified organisms (GMOs) and the lessons from Easter Island. There are flowcharts and solved quantitative examples that make the introduced concepts less abstract. Each chapter is followed by exercises, making it easier to use for academic purpose / course assessment. I believe this text will be useful for advanced undergraduate or graduate-level college students, and that it is successful in its goal to rigorously address the role of engineering with respect to environmental sustainability, and to help engineers understand sustainability.' John W. Sutherland, Fehsenfeld Family Head of Environmental and Ecological Engineering, Purdue University

'In Sustainable Engineering, Bhavik R. Bakshi demonstrates that engineers and conservationists can be important allies. Using a variety of real-world examples and detailed case studies, Bakshi makes the case that engineering practices can lead to a sustainable future.' Mark R. Tercek, CEO of The Nature Conservancy and author of Nature’s Fortune: How Business and Society Thrive by Investing in Nature

'Sustainable Engineering provides a comprehensive engineering treatment of sustainability. This is the only textbook covering many of the new approaches to sustainable engineering. Clear, succinct chapters, and the range of quantitative problems, make for a welcome textbook that will be widely useful for undergraduate engineering classes. It includes recent concepts such as water footprinting, energy return on investment, material flow analysis, energy analysis, ecosystem services calculations, techno-economic analysis, and industrial symbiosis. The problems are quantitative and thorough, with sufficient worked examples that they can be mastered in an introductory sustainable engineering course. The sustainability framing is broad and thorough, allowing undergraduates to see the big-picture context for sustainable engineering. References are also excellent, encouraging students to become familiar with key data sources, software, and the relevant scientific literature.' Valerie Thomas, Anderson Interface Professor of Natural Systems, Georgia Institute of Technology

‘This book will be ideal to be consulted by my Geotechnical Engineering students at level 6. It is a complete approach to sustainability engineering, so, I will definitively adopt it as a reference.' Hector Levatti, London South Bank University

See more reviews

Product details

June 2019
Adobe eBook Reader
9781108359429
0 pages
187 b/w illus. 87 tables 110 exercises
This ISBN is for an eBook version which is distributed on our behalf by a third party.

Drawing on multidisciplinary perspectives from engineering, economics, business, science, and human behavior, this text presents an unrivalled introduction to how engineering practice can contribute to sustainable development. Varied approaches for assessing the sustainability of engineering and other human activities are presented in detail, and potential solutions to meet key challenges are proposed, with an emphasis on those that require engineering skills. Each concept and approach is supported by mathematical representation, solved problems, real-world examples, and self-study exercises. Topics covered range from introductory material on the nature of sustainability, to more advanced approaches for assessment and design. Prerequisites for each chapter are clearly explained so the text can be adapted to meet the needs of students from a range of backgrounds. Software tutorials, project statements and solutions, lecture slides, and a solutions manual accompany the book online, making this an invaluable resource for courses in sustainable engineering, as well as a useful reference for industry practitioners.

'This book addresses such critical topics as life-cycle assessment, energy and material flows, exergy, sustainability assessment, engineering design, industrial symbiosis, and circular economy. The author utilizes various case studies/examples, such as the case of genetically modified organisms (GMOs) and the lessons from Easter Island. There are flowcharts and solved quantitative examples that make the introduced concepts less abstract. Each chapter is followed by exercises, making it easier to use for academic purpose / course assessment. I believe this text will be useful for advanced undergraduate or graduate-level college students, and that it is successful in its goal to rigorously address the role of engineering with respect to environmental sustainability, and to help engineers understand sustainability.' John W. Sutherland, Fehsenfeld Family Head of Environmental and Ecological Engineering, Purdue University

'In Sustainable Engineering, Bhavik R. Bakshi demonstrates that engineers and conservationists can be important allies. Using a variety of real-world examples and detailed case studies, Bakshi makes the case that engineering practices can lead to a sustainable future.' Mark R. Tercek, CEO of The Nature Conservancy and author of Nature’s Fortune: How Business and Society Thrive by Investing in Nature

'Sustainable Engineering provides a comprehensive engineering treatment of sustainability. This is the only textbook covering many of the new approaches to sustainable engineering. Clear, succinct chapters, and the range of quantitative problems, make for a welcome textbook that will be widely useful for undergraduate engineering classes. It includes recent concepts such as water footprinting, energy return on investment, material flow analysis, energy analysis, ecosystem services calculations, techno-economic analysis, and industrial symbiosis. The problems are quantitative and thorough, with sufficient worked examples that they can be mastered in an introductory sustainable engineering course. The sustainability framing is broad and thorough, allowing undergraduates to see the big-picture context for sustainable engineering. References are also excellent, encouraging students to become familiar with key data sources, software, and the relevant scientific literature.' Valerie Thomas, Anderson Interface Professor of Natural Systems, Georgia Institute of Technology

‘This book will be ideal to be consulted by my Geotechnical Engineering students at level 6. It is a complete approach to sustainability engineering, so, I will definitively adopt it as a reference.' Hector Levatti, London South Bank University